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Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through
the thruster nozzle. The question then arises of how the magnetically confined plasma can detach
from the spacecraft. This work presents a magnetohydrodynamicsMHDd detachment scenario in
which the plasma flow stretches the magnetic field lines to infinity. Detachment takes place after the
energy density of the expanding magnetic field drops below the kinetic energy density of the plasma.
As plasma flows along the magnetic field lines, the originally sub-Alfvénic flow becomes
super-Alfvénic; this transition is similar to what occurs in the solar wind. In order to describe the
detachment quantitatively, the ideal MHD equations have been solved for a cold plasma flow in a
slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super-Alfvénic
flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. It is shown that
efficient detachment is feasible if the nozzle is sufficiently long. ©2005 American Institute of
Physics. fDOI: 10.1063/1.1875632g

I. INTRODUCTION

This work addresses the detachment issue for plasma-
based space propulsion systems. Such systems are meant to
generate thrust by ejecting directed plasma flow. Some of
them employ magnetic nozzles with a strong magnetic field
to guide the plasma along the field lines towards the exhaust.
The ejected plasma must eventually break-free from the
spacecraft in order to produce thrust. The point of concern
here is that the field lines from the on-board magnets alone
are apparently closed. As a result, the plasma would never be
able to fly away from the spacecraft if it moved alongthose
lines.

There are two conceivable ways to overcome this diffi-
culty. The first scenario involves breaking the frozen-in con-
straint, via recombination, or some other mechanism. The
second scenario preserves the frozen-in condition. It implies
that plasma detaches from the spacecraft together with the
field lines that become stretched along the flow. The resulting
magnetic field in the plume is almost entirely due to the
plasma currents. This picture is very similar to what actually
happens in the solar wind as it moves away from the Sun.1

It is appropriate to accentuate the difference between
detachment of plasma and detachment of isolated charged
particles. A single ion will readily escape from a magnetic
field line if its gyroradius is greater than the characteristic
spatial scale of the field. However, for a sufficiently dense
plasma, ions can only escape together with electrons to
maintain quasineutrality of the plasma. The electrons, which
have very small gyroradii, tend to be closely tied to the field
lines, and the plasma can remain attached to the magnetic
field lines even when the ions themselves are not magne-
tized. Because of this constraint, it is very difficult to achieve
detachment via particle drift motion across the field lines.2

Plasma recombination in which ions and electrons recombine
to form neutrals does not appear to be an attractive detach-
ment mechanism because the recombination rates are typi-

cally too low in the expanding nozzle region. The effects of
finite resistivity could lead to plasma detachment. However,
as concluded in Ref. 3, “the resistive detachment of plasma
does not really solve the detachment problem, because the
intended thrust will be substantially cancelled by the resis-
tive drag on the plasma by the nozzle magnetic field—no
matter what value is achieved by the magnetic Reynolds
number.” A subsequent study has shown that this conclusion
may be too extreme and “plasma detachment can be medi-
ated by several fundamental mechanisms,all of which are
nonideal within the context of magnetohydrodynamics
sMHDd.”4 The above considerations motivate us to investi-
gate the physics of “frozen-in” detachment of plasma from
magnetic nozzle, which is the main subject of the paper. In
contrast with Ref. 4, we demonstrate thatplasma detachment
from the nozzle is possible even within ideal MHD.

The essence of the frozen-in detachment scenario is de-
lineated in the following quote from Ref. 2. “As the plasma
expands down the magnetic field, the ratio of plasma and
magnetic field energy densities increases. The ratio of flow
energy to magnetic energy isb f =nMiu

2/ sB2/m0d: for flow
along constant flux, this ratio is proportional ton−1. As b f

approaches unity, there will be sufficient energy in the
plasma for it to tear from the magnetic field. This physics,
which includes significant plasma perturbation to the vacuum
magnetic field and subsequent reconnection of the field lines,
needs to be addressed bothexperimentallyandtheoretically.”
Experimentaltests of the described concept in laboratory
conditions still remain to be performed. It is the objective of
this paper to provide atheoreticaldescription of the concept.

The passage of plasma from strong magnetic field region
to weak magnetic field region can be viewed as a transition
from sub-Alfvénic to super-Alfvénic flow. The important dif-
ference between the two is that all the perturbations propa-
gate only downstream in super-Alfvénic flow, whereas, in
sub-Alfvénic flow, the perturbations can propagate in both
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directions supstream and downstreamd. In this respect, a
magnetic nozzle is similar to the conventional de Laval
nozzle, which transforms subsonic flow into supersonic
flow.5

A super-Alfvénic plasma flow is guaranteed to detach
from the spacecraft. However, the flow directivity may de-
crease significantly if the super-Alfvénic transition occurs
too close to the open end of the nozzle. This raises an im-
mediate question about detachment efficiency, because a
strongly diverging plume requires more power than a per-
fectly directed flow to produce the same thrust.

One of the goals of this paper is to derive the conditions
required for efficient super-Alfvénic plasma detachment. In
order to do this, we consider a steady-state flow of a cold
plasma through a magnetic nozzle that has a perfectly con-
ducting axisymmetric wall to confine a given magnetic flux.
It is assumed that the plasma flow inside the nozzle is di-
rected along the magnetic field, whose energy density ex-
ceeds the energy density of the flow at the nozzle entrance.
We use the ideal magnetohydrodynamicssMHDd model to
describe the plasma flow and the magnetic field self-
consistently. The problem of plasma detachment can be natu-
rally divided into two subproblems:s1d description of sub- to
super-Alfvénic transition inside the nozzle;s2d description of
highly super-Alfvénic flow of a cold plasma jet outside the
nozzle.

In this paper, for the sake of simplicity, we assume a
given flow of a cold plasma at the nozzle entrance and we do
not discuss how to create the incoming flow. The specifics of
plasma flow formation differ for different thruster concepts.
The particular concept that motivated this work is VASIMR
svariable specific impulse magnetoplasma rocketd.6 In
VASIMR, the plasma flow enters the magnetic nozzle from
the ICRH sion cyclotron resonance heatingd module, where
the rf power is deposited into the ion gyromotion. The ICRH
module creates a flow, in which the ion gyroenergymiv'

2 /2
is much greater than the energy of the axial ion motion
mivi

2/2 and the spread inv' is relatively small due to a
single-pass ICRH scheme.7 The diverging magnetic field
converts the ion rotational motion into the axial motion, ac-
celerating the flow. The acceleration takes place in a strong
field that remains unaffected by the plasma flow. After most
of the ion gyroenergy is converted into the axial motion, one
obtains the required cold plasma flow along the field lines,
which we use as an input in our detachment analysis.

The paper is organized in the following way: Sec. II
presents a basic equation for the magnetic flux surfaces in a
steady-state MHD-flow; Sec. III discusses a particular case
of a conical nozzle; Sec. IV contains qualitative analysis of
sub- to super-Alfvénic transition in a slowly diverging nozzle
and preliminary estimates for nozzle efficiency; and Sec. V
describes quantitatively the magnetic field distortion due to
plasma flow in the nozzle. This description includes sub- to
super-Alfvénic transition. Section VI presents rigorous
analysis of the rarefaction wave in the outgoing flow and
accurate calculation of the nozzle efficiency. Section VII
contains a brief discussion of the results.

II. BASIC EQUATIONS

We start with ideal MHD equations for a steady-state
flow of a cold magnetized plasma;8

rsv · = dv = −
1

4p
B 3 f= 3 Bg, s1d

= · srvd = 0, s2d

= 3 fv 3 Bg = 0, s3d

= ·B = 0, s4d

wherev is the plasma velocity,r is the plasma mass density,
andB is the magnetic fieldsproduced by both, external cur-
rents and plasma currentsd.

We will limit our analysis to the case of a field-aligned
flow, in which

v = v
B

B
. s5d

In such a flow, the magnitude of the plasma velocityv and
the ratio r /B are constant along the magnetic field lines.
Indeed, by taking a scalar product of Eq.s1d with B and
using Eq.s5d, we find that

B · = v2 = 0, s6d

after which Eq.s2d, with the use of Eqs.s4d–s6d, can be
rewritten as

B · = S r

B
D = 0. s7d

We now use Eqs.s5d and s6d to transform Eq.s1d to

x

B
SB

B
· = DB

B
= − B 3 f= 3 Bg, s8d

with

x ;
4prv2

B
. s9d

As v andr /B are constants along the field lines, the quantity
x also does not change along the magnetic field lines. There-
fore, the value ofx on each field line is the same as that in
the incoming flow.

In what follows, we consider an axisymmetric problem
and we use cylindrical coordinatessr ,w ,zd, with the z axis
directed downstream along the axis of symmetry. Moreover,
we limit our consideration to the case in which the magnetic
field has onlyr and z components, so that the field can be
expressed in terms of a flux functionFsr ,zd:

Brsr,zd = −
1

r
S ]F

]z
D

r
, s10d
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Bzsr,zd =
1

r
S ]F

]r
D

z
. s11d

This representation automatically satisfies the condition
div B=0. Note that equationFsr ,zd=const specifies an axi-
symmetric magnetic flux surface.

In view of the fact thatx is a given function ofF, we
change independent variables fromr andz to F andz. Now
r becomes a function ofF andz, so that

dr = S ]r

]F
D

z
dF + S ]r

]z
D

F

dz. s12d

Next, we use Eq.s12d to express the magnetic field compo-
nentsfEqs.s10d and s11dg in terms ofrsF ,zd:

Br = 2S ]r

]z
D

F

S ]r2

]F
D

z

−1

, s13d

Bz = 2S ]r2

]F
D

z

−1

. s14d

We now transform Eq.s8d to the new variables. Using
the vector identity

SB

B
· = DB

B
= −

B

B
3 F= 3

B

B
G

= −
B

B2 3 Sf= 3 Bg + FB

B
3 = BGD , s15d

we rewrite Eq.s8d in the form

x

B2fB 3 fB 3 = Bgg = S1 −
x

B
DfB 3 f= 3 Bgg, s16d

where all the terms involvingf=3Bg are collected on the
right-hand side. It follows from Eqs.s10d and s11d that f=
3Bg has only aw component and it is therefore orthogonal
to B. SincefB3 =Bg is also orthogonal toB, then Eq.s16d
is equivalent to

x

B2fB 3 = Bg = S1 −
x

B
Df= 3 Bg. s17d

The only nontrivial component of this equation is itsw com-
ponent. With the help of Eqs.s10d and s11d, we can write
down f=3Bgw in the following form:

f= 3 Bgw = S ]Br

]z
D

r
− S ]Bz

]r
D

z

= S ]Br

]z
D

F

+ S ]Br

]F
D

z
S ]F

]z
D

r
− S ]Bz

]F
D

z
S ]F

]r
D

z

= S ]Br

]z
D

F

− rBrS ]Br

]F
D

z
− rBzS ]Bz

]F
D

z

= S ]Br

]z
D

F

−
r

2
S ]B2

]F
D

z
. s18d

Similarly, we use Eqs.s10d and s11d to calculate fB
3 =Bgw:

fB 3 = Bgw = BzS ]B

]r
D

z
− BrS ]B

]z
D

r

= BzS ]B

]F
D

z
S ]F

]r
D

z
− BrS ]B

]z
D

F

− BrS ]B

]F
D

z
S ]F

]z
D

r

= rB2S ]B

]F
D

z
− BrS ]B

]z
D

F

. s19d

Substitution of expressionss18d ands19d into Eq.s17d yields

r

2
S ]B2

]F
D

z
= S ]Br

]z
D

F

− F ]

]z
SxsFd

Br

B
DG

F

. s20d

This equation, together with Eqs.s13d and s14d, deter-
mines the form of magnetic flux surfacesr =rsF ,zd in a
steady-state flow with a given profile ofxsFd. Knowing r
=rsF ,zd, one can findBr andBz from Eqs.s13d ands14d and
then determine plasma density and flow velocity from Eqs.
s5d and s7d using values ofr andv in the incoming flow.

III. CONICAL NOZZLE

In this section we discuss a particular case of a conical
nozzle for which the solution of Eq.s17d can be constructed
readily. We consider a nozzle with an infinitely long per-
fectly conducting wall located atrszd=z tanu0, whereu0 is
the nozzle divergence anglessee Fig. 1d.

In the absence of plasma, the left-hand side of Eq.s17d
vanishes and Eq.s17d reduces to=3B=0. The correspond-
ing vacuum magnetic field is tangential to the nozzle wall at
the boundary and has a monopolelike configuration:

Br =
rF0

s1 − cosu0dsr2 + z2d3/2, s21d

Bz =
zF0

s1 − cosu0dsr2 + z2d3/2, s22d

where 2pF0 is the total magnetic flux.
It turns out that the field given by Eqs.s21d and s22d

satisfies Eq.s17d even in the presence of plasma, because
fB3 =Bg=0 for the monopolelike configuration. Therefore,
Eqs. s21d and s22d also represent the field in a steady-state
plasma flow through the conical nozzle. The magnetic field

FIG. 1. Magnetic nozzle with a ideally conducting conical wall. The nozzle
divergence angle isu0.
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and the plasma motion are apparently decoupled in this case.
The magnetic field is not affected by the plasma, because
there is no plasma currents=3B=0d. The plasma motion is
not affected by the magnetic field, because the field lines are
straight.

We now use Eqs.s10d ands11d together with the bound-
ary condition at the perfectly conducting wall,

rsF0,zd = z tanu0, s23d

in order to findFsr ,zd. By inverting functionF=Fsr ,zd, we
find that the magnetic flux surfaces are given by

rsF,zd = zÎS1 − s1 − cosu0d
F

F0
D−2

− 1. s24d

The sub- to super-Alfvénic transition is trivial in the case
of a conical nozzle, since the plasma motion is free in this
case. It is noteworthy that the flow becomes super-Alfvénic
without any plasma acceleration. The transition occurs en-
tirely due to the decrease of the magnetic field and the
Alfvén velocity downstream. The force-free motion of the
plasma is a unique feature of conical nozzle. In a curved
guiding magnetic field, the plasma motion and the magnetic
field are coupled via plasma currents. It is then important to
know whether or not such coupling creates singularities
sshock wavesd near the super-Alfvénic transition. A favorable
answer to this questions is obtained in Secs. IV and V.

IV. PRELIMINARY ESTIMATES AND QUALITATIVE
ANALYSIS

In order to estimate the plasma effect on the magnetic
field configuration, we consider a paraxial nozzle with a
curved ideally conducting wall atr =Rszd. The paraxial ap-
proximation implies that

u0
2 ! 1, s25d

kR! 1, s26d

whereu0;]R/]z andk is the field line curvature.
We then estimate the left-hand side of Eq.s20d as

r

2
S ]B2

]F
D

z
<

dB

R
, s27d

wheredB is the characteristic variation of the magnetic field
in the cross section. It is convenient to write down the first
term on the right-hand side of Eq.s20d in the following form:

S ]Br

]z
D

F

< BS ]

]z

Br

B
D

F

+
Br

B
S ]B

]z
D

F

, s28d

where

BS ]

]z

Br

B
D

F

< B
]u0

]z
< kB. s29d

We now note that in a paraxial nozzleBR2<const, so that

Br

B
S ]B

]z
D

F

< BrR
2S ]

]z

1

R2D
F

< − 2u0
2B. s30d

Except for numerical factors, Eqs.s29d and s30d give the
following estimate for the first term on the right-hand side of
Eq. s20d:

S ]Br

]z
D

F

,
B

R
skR+ u0

2d. s31d

The second term on the right-hand side of Eq.s20d can be
estimated as

S ]

]z
F4pr

B2 v2BrGD
F

<
v2

vA
2 BS ]

]z

Br

B
D

F

<
v2

vA
2 kB. s32d

This estimate takes into account Eq.s9d. We now find from
Eqs.s20d, s31d, ands32d that

dB , BFS1 +
v2

vA
2DkR+ u0

2G . s33d

It follows from Eqs.s33d, s25d, and s26d, that the mag-
netic fieldB is nearly constant over the cross section in the
absence of plasma flow, i.e.,

dB , BskR+ u0
2d ! B. s34d

The field is also nearly constant in the presence of flow un-
less the flow is highly super-Alfvénic with

v ù
vA

ÎkR
. s35d

Equation s33d indicates that, in a slowly diverging
paraxial nozzle, the sub- to super-Alfvénic transition does
not perturb the magnetic field significantly even if the nozzle
is not exactly conical. The corresponding magnetic field dis-
tortion can be found with the use of standard perturbative
techniquessee Sec. Vd.

As already stated, a super-Alfvénic flow is guaranteed to
detach from the nozzle. However, it is important to point out
that the flow may somewhat expand and partially lose its
directivity in the process of detachment. The expansion is
caused by magnetic field pressure that becomes unbalanced
when the plasma leaves the nozzle, as the magnetic flux is
not confined by the nozzle walls anymore.

In order to explain how the expansion affects the flow,
we first review propagation of perturbations in a moving
plasma. There is a direct similarity between a supersonic gas
flow9 and a super-Alfvénic plasma flow. If the plasma flow is
perturbed at a certain location, the perturbation propagates
with the Alfvén speedsrelative to the plasmad. In addition,
the perturbation is also “carried along” by the flow with ve-
locity v. Therefore, aperturbation in super-Alfvénic flow
propagates only downstreamwithin a cone with angleuA

=sin−1svA/vd.
In the conical nozzle, the flow diverges downstream at

an angleu0. As a result, perturbation created at the nozzle
wall never reaches the axis ifu0 is bigger thanuA. Moreover,
the smaller the ratiouA/u0, the smaller the part of the flow
affected by the perturbation isssee Fig. 2d. If we change the
wall configuration, then the plasma flow will change as well.
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However, the changes involve only a thin layer next to the
wall, whereas the rest of the flow is left intact. Clearly,
switching from an infinitely long nozzle to a nozzle with an
open end can be viewed as a modification of the wall con-
figuration. We thus conclude that, after the strongly super-
Alfvénic flow leaves the nozzle, the flow pattern changes
only in a thin surface layer of plasma, provided that the
nozzle extends sufficiently far downstreamsu0@uAd. Direc-
tivity of the main part of the outgoing flow should not be
affected in this case.

There are two factors that affect directivity: divergence
of the nozzle itself and additional radial expansion of the
outgoing flow (plume) at its edge.

In order to estimate the effect of nozzle divergence, we
consider an infinitely long nozzle shown in Fig. 3. At the
nozzle entrance, the walls are straight and the field lines are
parallel to the axis. The nozzle expands slowly and eventu-
ally becomes a conical nozzle with angleu0.

We introduce nozzle efficiencyh as a ratio of the outgo-

ing axial momentum fluxṖz
out to the axial momentum flux in

the incoming flowṖz
in:

h ;
Ṗz

out

Ṗz
in

. s36d

Relative change in axial momentum is cosu for a flux tube
that has angleu with the axis in the conical part of the
nozzle. If the flow velocity and plasma density are constant
over the cross section of the incoming flow, then the overall
efficiency for the paraxial nozzle is given by

h < 1 −
u0

2

4
. s37d

This expression results from straightforward averaging over
all flux tubesssee the Appendix for more detailsd.

It is apparent that the axial momentum flux does not
change inside the conical part of the nozzle. It only changes
in the area where the magnetic field lines curve. Azimuthal
plasma currents arise in this area, so that there is afj 3Bg
force acting on the flow. This force has an axial component
directed against the flowssee Fig. 3d. In other words, the
currents in the nozzle wall attract the plasma currents and
this attraction slows down the flow as the plasma proceeds
from the cylindrical to conical part of the nozzle.

If the nozzle has a finite length, then the nozzle effi-
ciency will be somewhat reduced by the radial expansion of
the plasma. As demonstrated previously, in a highly super-
Alfvénic plume, the expansion should affect only a thin outer
layer. The magnetic field gradient inside the main part of the
flow is much smaller than that inside the layer. Accordingly,
the plasma currents are primarily within the outer layer and
they have the same direction as the currents in the wall. The
wall currents attract the currents in the plume similarly to
what happens in the curved part of the nozzle.

To estimate the ensuing decrease in nozzle efficiency,10

we select a moving slice of the plasma that leaves the nozzle
in a time intervaldt ssee Fig. 4d. If the radial thickness of the
current layer isD, then the plasma current density in the
layer is jw<cB/ s4pDd, assuming that the characteristic mag-
netic field inside the plumeB is much larger than the ambient
field. Therefore, the total ring current in the selected slice is

FIG. 2. Perturbations in a super-Alfvénic flow propagate only downstream
within a cone with angleuA=sin−1svA/vd. If the nozzle divergence angleu0

is bigger thanuA, then a perturbation created at the wall does not propagate
inward.

FIG. 3. Nozzle with curved magnetic field lines. At the nozzle entrance, the
walls are straight and the field lines are parallel to the axis. The nozzle
expands slowly and eventually becomes a conical nozzle with angleu0.

FIG. 4. A moving slice of the plasma plume slows down due to the attrac-
tion force between the current in the slice and the wall current.
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Iw < jwsvdtdD <
cB

4p
vdt, s38d

wherevdt is the slice thickness.
Apparently, the current in the nozzle wallsper unit

lengthd is cB/4p. Then the attraction force between the cur-
rent in the slice and the wall currents is estimated as

Fz , 2pR
Iw

c

B

4
, s39d

assuming that the distance between the nozzle opening and
the slice is comparable toR.

This force decreases the axial momentum of the slice by

dPz < Fz
R

v
, 1

8B2R2dt, s40d

as it moves away from the nozzle opening. HereR/v is the
time it takes for the slice to move away from the nozzle to
the area where the attraction force is negligible.

The momentum of the slice at the nozzle opening is
roughly given by

Pz < vrpR2vdt, s41d

where r is the plasma mass density. Then the relative de-
crease in the axial momentum of the slice is

dPz

Pz
,

B2R2dt

8pvrR2vdt
,

vA
2

2v2 . s42d

We can now combine Eqs.s37d ands42d to estimate the
efficiency of a finite length nozzle with a divergence angle
u0:

h , 1 −
vA

2

2v2 −
u0

2

4
. s43d

It is noteworthy that the inefficiency associated with the
plume expansion is insignificant foruA=vA/v!u0. This con-
dition requires the nozzle to be sufficiently long.

V. SUB- TO SUPER-ALFVÉNIC TRANSITION
IN A PARAXIAL NOZZLE

As shown in the preceding section, the sub- to super-
Alfvénic transition has relatively minor effect on the mag-
netic field profile in a paraxial nozzle. Therefore, the distor-
tion of the magnetic field can be found via a standard
perturbation technique.11 To the lowest order inkRv2/vA

2 and
u0, Eq. s20d reads

r

2
S ]B2

]F
D

z
= 0. s44d

This equation shows that the magnetic field is constant in the
cross section. The ideally conducting wall confines the mag-
netic flux radially atr =Rszd. The corresponding magnetic
flux surfaces inside the nozzle are given by

rsF;zd = RszdÎ F

F0
. s45d

Knowing the lowest order solution, we solve for the first
order correctiongsF ;zd, defined as

gsF;zd ; r2sF;zd − R2szd
F

F0
. s46d

Equations20d now becomes an equation forgsF ;zd:

]2g

]F2 =
R2

2F0
2S ]R

]z
D2

−
R5

4F0
3

]

]z
FS2F0

R2 −
4pr

B
v2D ]R

]z
G

; GsF,zd. s47d

The boundary conditions at the ideally conducting wall and
at the axis are

gsF0;zd = 0, s48d

gs0;zd = 0. s49d

The correction satisfying the boundary conditions is given by

gsF,zd =E
0

F

dsE
0

s

dcGsc,zd −
F

F0
E

0

F0

dsE
0

s

dcGsc,zd.

s50d

This expression shows explicitly that the transition from sub-
Alfvénic to super-Alfvénic flow is nonsingular if the nozzle
is slowly diverging, but not necessarily conical.

VI. RAREFACTION WAVE IN THE OUTGOING FLOW

In this section, we discuss how a highly super-Alfvénic
flow continues past the nozzle exit into exhaust. For the sake
of simplicity, we assume that the flow velocity and plasma
density are constant over the cross section inside the nozzle.

It follows from Eq. s24d that, except for small correc-
tions, the magnetic flux surfaces inside a paraxial nozzle are
given by

rsF,zd = u0zÎ F

F0
, s51d

which leads to the following relation betweenB andz:

B =
2F0

z2u0
2 . s52d

Prior to describing the rarefaction wave in the plume, we
consider small perturbations in a steady-state flow, which
result from slight distortion of the conical nozzle.

A. Small perturbations

We define a normalized perturbation of the magnetic flux
surfaces as

F ; Sr − u0zÎ F

F0
D1

z
Î F

F0
. s53d

Straightforward linearization of Eq.s20d yields the following
equation for the normalized perturbation:
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8F0
3

u0
4

F

F0

]2F

]F2 = x0
]2F

]s2 , s54d

where

s; 1/z s55d

and x0=4prv2/B is a parameter independent ofz and F,
which is calculated for the unperturbed quantities inside the
nozzle.

Equations54d is a hyperbolic PDE and it has two fami-
lies of characteristics,

C+ = F1 −
F

F0
G + F1 −

s

s0
G , s56d

C− = F1 −
F

F0
G − F1 −

s

s0
G , s57d

with

s0 ;Îu0
4x0

8F0
. s58d

Similarly to what happens in a steady-state two-
dimensional supersonic flow,12 small perturbations propagate
in z along these two families of characteristics. TheC+ char-
acteristics originate at the axis and continue downstream,
whereas theC− characteristics originate at the wallssee Fig.
5d.

It follows form Eq. s57d that a C− characteristic that
intersects the wall atz.z0=1/s0 never reaches the axis.
Likewise, aC+ characteristic, intersecting the axis atz.z0

=1/s0, never reaches the wall. Therefore,z=z0 is a cutoff
point, beyond which the wall and the axis “do not commu-
nicate.” At the cutoff point we have

uAsz0d = SvA

v
D

z0

=
u0

2
s59d

fsee Eqs.s58d, s52d, ands9dg. It is important that only a thin
layer of plasma is affected by the distortions of the conical

nozzle walls if the distortions occur sufficiently far down-
streamsu0@uAd.

B. Plume

In this section we construct a rigorous solution for
highly super-Alfvénic steady-state plume that consists of two
parts: unperturbed main flowwith straight magnetic field
lines and ararefaction waveat the edge of the main flow.

In the case of highly super-Alfvénic flow, Eq.s20d re-
duces to

r

2
S ]B2

]F
D

z
= − x0S ]

]z

Br

B
D

F

. s60d

In the paraxial approximation, the quantitiesBr /B andB2 in
this equation are given by

Br

B
= 2S ]r

]z
D

F

, s61d

B2 = 4S ]r2

]F
D

z

−2

s62d

fsee Eqs.s13d ands14dg. We seek the functionrsF ;zd in the
form

rsF;zd ; zqsF;zd, s63d

whereq is the new unknown function. We also uses;1/z
instead ofz as an independent variable. These transforma-
tions reduce Eqs.s60d–s62d to the following equation for
qsF ;sd:

2qF ]

]F
S ]q2

]F
D

s

−2G
s
= − x0S ]2q

]s2D
F

. s64d

We will limit our consideration to the caseu0@uA, for
which the rarefaction wave is localized at the edge of the
plume, whereq<u0 fsee Eqs.s51d and s63dg. It is then al-
lowable to replace the multiplierq on the left-hand side of
Eq. s64d by u0. We now take aF derivative of both sides of
Eq. s64d to find that

2u0F ]2

]F2S ]q2

]F
D

s

−2G
s
= − x0F ]2

]s2S ]q

]F
D

s
G

F

. s65d

The magnetic field in the thin outer layer can be approxi-
mated by the following expression:

B =
1

r
S ]r

]F
D

z

−1

<
s2

u0
S ]q

]F
D

s

−1

. s66d

This allows us to rewrite Eq.s65d as a nonlinear equation for
B:

u0
2

2
S ]2

]F2

B2

s4 D
s
= − x0S ]2

]s2

s2

B
D

F

. s67d

The structure of Eq.s67d suggests a separable solution

FIG. 5. Characteristics in a highly super-Alfvénic flow. TheC+ characteris-
tics originate at the axissF=0d and theC− characteristics originate at the
wall sF=F0d. QuantitiesF and z are normalized toF0 and 1/s0, where
2pF0 is the total magnetic flux and 1/s0 is the location of the cutoff point
fexpression fors0 is given by Eq.s58dg.
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that is a product of two functions: a function ofF and a
function of s. It can be directly verified that such a solution
has the form

B = s2Sx0

u0
2D1/3SF0 − F

s* − s
D2/3

, s68d

wheres* is an arbitrary constant.
In order to describe the rarefaction wave, this solution

must satisfy two conditions:s1d the magnetic field must van-
ish at the plume edge, which corresponds toF=F0 ands2d it
must match the unperturbed solutions52d on theC− charac-
teristic that starts at the wall right at the nozzle end. The first
condition is apparently satisfied by Eq.s68d, whereas the
second condition is satisfied if we choosez* =1/s* to be the
location of the nozzle end. Indeed, the characteristic that cor-
responds to the boundary between the unperturbed flow and
the rarefaction wave is given by

1 −
F

F0
=Î8F0

u0
4x0

ss* − sd. s69d

Substitution of this expression into Eq.s68d yields the unper-
turbed field given by Eq.s52d.

Equation s68d gives magnetic field in the rarefaction
wave in terms ofF and s. In order to findB=Bsr ,zd, we
have to findr =rsF ,zd first. Taking into account that]r /]z is
continuous at theC− characteristic and using Eqs.s53d, s63d,
s66d, ands68d, we obtain

rsF;zd = zu0 + 2zF1 −
z*

z
GvA

v
− 3zFu0

2

vA
2

v2G1/3

3F1 −
z*

z
G2/3F1 −

F

F0
G1/3

, s70d

wherevA is calculated for the unperturbed magnetic field and
plasma density at the nozzle end. Finally, Eq.s68d together
with Eq. s70d yields

Bsr,zd = B*
z*

2

z2

v2

9vA
2

3F1 −
z*

z
G−2F r

z
− u0 −

2vA

v
S1 −

z*

z
DG2

, s71d

whereB* is the magnetic field at the nozzle opening.
In order to find plasma density in the plume we use the

fact that the ratior /B is constant along the magnetic field
lines, so thatr has the same spatial dependence asB. The
corresponding plasma density profile is shown in Fig. 6. The
location of the plasma-vacuum interfacesF=F0d follows di-
rectly from Eq.s70d:

rpv = zu0 + 2zF1 −
z*

z
GvA

v
. s72d

The inner boundary of the layer is located at

rc = zu0Î1 −
2

u0

vA

v
S1 −

z*

z
D , s73d

which follows from Eqs.s51d and s69d.
It is important to point out that forz@z* , Eqs.s72d and

s73d reduce to

rpv < su0 + 2uAdz, s74d

rc < su0 − uAdz, s75d

which means that the magnetic field lines become straight
asymptotically. As the momentum flux in such a flow re-
mains constant, the asymptotic flow is completely detached
from the nozzle.

To conclude this section, we give the complete expres-
sion for the magnetic field in the plume:

FIG. 6. Two-dimensional plasma density profile in a
super-Alfvénic plume.
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Bsr ;zd =5
2F0

z2u0
2 , r ø rc

B*
z*

2

z2

v2

9vA
2F1 −

z*

z
G−2F r

z
− u0 −

2vA

v
S1 −

z*

z
DG2

, rc , r , rpv

0, rpv ø r ,
6 s76d

wherez* is the location of the nozzle end,B* is the magnetic
field at the nozzle end, andvA is the Alfvén speed calculated
for the unperturbed magnetic field and plasma density at the
nozzle end. The quantitiesrc and rpv are defined as

rc = zu0Î1 −
2

u0

vA

v
S1 −

z*

z
D , s77d

rpv = zu0 + 2zF1 −
z*

z
GvA

v
. s78d

VII. SUMMARY AND DISCUSSION

We have demonstrated that a slowly diverging nozzle
provides well-controlled transition from sub- to super-
Alfvénic plasma flow. The transition occurs without any sig-
nificant perturbation of the guiding magnetic field. The
super-Alfvénic flow detaches from the nozzle at the nozzle
end, with the nozzle efficiency roughly given by

h , 1 −
u0

2

4
−

vA
2

2v2 , s79d

whereu0 is the nozzle divergence angle andvA is the Alfvén
speed calculated for the unperturbed magnetic field and
plasma density at the nozzle end. The inefficiency associated
with the detachment is insignificant forvA/v!u0. This in-
equality requires the nozzle to be sufficiently long. In the
paraxial case, reconnection eventssif anyd can only occur in
the super-Alfvénic plume outside the nozzle, so that the flow
inside the nozzle is unaffected. The effect of reconnection on
detachment efficiency should then be minimal.

In this work, consideration is limited to steady-state
plasma flow. A time-dependent simulation is required in or-
der to understand how the steady-state regime establishes.
Such simulations would also allow to quantify the effect of
transient phenomena on the nozzle efficiency.

Another natural extension of the presented work would
be a stability analysis of the described flow. It is apparent
that low-frequency MHD instabilities are very likely to be
suppressed, because the ion lifetime in the magnetic nozzle
is extremely short. What is less clear is the role of higher
frequency instabilities that may break the frozen-in condition
due to anomalous resistivity. Also, strong velocity shear in-
side the nozzle may be unstable.

Our description of the rarefaction wave in the outgoing
flow sSec. VId implies that there is no vacuum gap between
the plasma and the nozzle wall. In reality, the vacuum gap
with magnetic field in it may actually be present. If this is the

case, then for highly super-Alfvénic flow, the plume will still
consist of two distinct parts: unperturbed main flow with
straight magnetic field lines and a rarefaction wave at the
edge of the main flow. The presence of the magnetic field in
the vacuum gap affects only the thin outer layer associated
with the rarefaction wave. The magnetic field that comes out
of the gap decreases away from the opening at a distance
comparable to the width of the gap. Even if the width of the
gap is comparable to the radius of the nozzle, the rarefaction
wave is not expected to change the nozzle efficiency signifi-
cantly for highly super-Alfvénic flow.

If the plasma density drops towards the nozzle wall, then
there may exist a thin sub-Alfvénic boundary layer near the
wall. The super-Alfvénic part of the flow will detach from
the spacecraft after leaving the nozzle, whereas the sub-
Alfvénic layer may not be able to escape. Even though this
thin outer layer carries only a small fraction of the plasma,
there is a concern about spacecraft surface damage by the
layer plasma. Absorbing limiters may be needed to deal with
this issue.

In conclusion, we note that experimental verification of
the super-Alfvénic detachment concept in laboratory appears
to be feasible. For example, the gas-dynamic trap,13 an axi-
symmetric mirror machine with large mirror ratio, is particu-
larly suitable for such an experiment.

ACKNOWLEDGMENTS

This work was supported by the VASIMR Plasma
Thruster project at NASA and by the U.S. Department of
Energy under Contract No. DE-FG03-96ER-54346. The au-
thors thank Dr. Roger Bengtson, Dr. Franklin Chang-Dìaz,
Dr. Dmitri Ryutov, and Dr. Roald Sagdeev for stimulating
discussions.

APPENDIX: NOZZLE EFFICIENCY

As defined by Eq.s36d in Sec. IV, the nozzle efficiency
is the ratio of the axial momentum flux in the outgoing flow
at z→ +` to the axial momentum flux in the incoming flow.

For the plume described in Sec. VI B, the axial momen-
tum flux in the outgoing flow

Ṗz
out = FE

0

`

rvz
22prdrG

z→+`

sA1d

is equal to the surface integral of the stress-tensor over the
nozzle outlet,
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Ṗz
out = FE

0

r0

Pzz2prdrG
z=z*

, sA2d

wherez* is the location of the outlet,r0 is its radius, and the
stress-tensor is defined as

Pik = rvivk −
1

4p
SBiBk −

1

2
B2dikD . sA3d

Note that, in general, the upper limit of integration in Eq.
sA2d should extend to infinity. However, it follows from Sec.
VI B that there is no magnetic field outside the plumeswithin
the validity range of the ideal MHD descriptiond, so that the
integral fromr0 to infinity gives no contribution to Eq.sA2d.
It must be pointed out that the frozen-in condition may
breakdown at the plume edge, where the plasma density be-
comes very low. This would allow a small portion of the
magnetic flux to leave the plume and produce a correspond-
ing contribution toPzz at r . r0. In order to find the resulting
correction to nozzle efficiency, one has to go beyond the
ideal MHD model presented in this paper.

The equivalence of expressionssA1d and sA2d is a con-
sequence of the momentum flux conservation in a steady-
state flow,

=kPik = 0. sA4d

Indeed, it follows from Eq.sA4d that the surface integral in
Eq. sA2d is equal to the surface integral ofPzz over the
plume cross section atz= +`. The magnetic field contribu-
tion to the integral vanishes asz→ +`, so that it is equal to
the expression given by Eq.sA1d and, therefore, Eqs.sA1d
and sA2d are equivalent.

The axial momentum flux in the incoming flow can also
be expressed in terms of the flow density and velocity at the
nozzle outlet:

Ṗz
in = FE

0

r0

srvzvd2prdrG
z=z*

. sA5d

In order to obtain Eq.sA5d, we consider a thin coaxial flux
tube with the inner radiusr and outer radiusr +dr at the
outlet. The mass flux through the tube issrvzdz*

2prdr, which
is constant along the flux tube. The momentum flux through
the tube in the incoming flow without radial divergence is
srvzvdz*

2prdr, where we took into account that the flow ve-
locity v is constant along the tube. Integration over all the
flux tubes gives Eq.sA5d.

We now use Eqs.sA2d and sA5d to find that the nozzle
efficiency is

h =
Ṗz

out

Ṗz
in

< Fe0
r0srvz

2 − Bz
2/8pdrdr

e0
r0srvzvdrdr

G
r=r*

, sA6d

where theBr
2 term was neglected, becauseBz@Br. The axial

component of the flow velocity can be written asvz

=v cosu<vs1−u2/2d, where u=usrd is the angle between
the flux tube and the axis. This allows us to reduce Eq.sA6d
to

h < 1 −Fe0
r0srvzvu2/2 + Bz

2/8pdrdr

e0
r0rvzvrdr

G
r=r*

< 1 −Fe0
r0srv2u2/2 + Bz

2/8pdrdr

e0
r0rv2rdr

G
r=r*

. sA7d

Finally, we evaluate the integrals in Eq.sA7d for a
straight conical nozzle withu< r /z* and uniform flow veloc-
ity and density in the cross-sectionfvsr ,z*d=v ,rsr ,z*d=r*g
to find that

h < 1 −
r*v

2r0
2u0

2/4 + B*
2r0

2/8p

r*v
2r0

2 < 1 −
u0

2

4
−

vA
2

2v2 , sA8d

whereu0; r0/z* , vA;B* /Î4pr* , andB* ;Bzs0,z*d.
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